Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 13(1): 351, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883200

RESUMO

BACKGROUND: Stem cell niche maintains stem cell population identity and is essential for the homeostasis of self-renewal and differentiation in Drosophila testes. However, the mechanisms of CySC lineage signals-mediated soma-germline communications in response to external stimuli are unclear. METHODS: Pre-initiation complex functions were evaluated by UAS-Gal4-mediated cell effects. RNA sequencing was conducted in NC and eIF5 siRNA-treated cells. Genetic interaction analysis was used to indicate the relationships between eIF5 and eIF1A/eIF2γ in Drosophila testes. RESULTS: Here, we demonstrated that in CySCs, translation initiation factor eIF5 mediates cyst cell differentiation and the non-autonomously affected germ cell differentiation process. CySCs lacking eIF5 displayed unbalanced cell proliferation and apoptosis, forming testicular germ cell tumors (TGCTs) during spermatogenesis. eIF5 transcriptional regulation network analysis identified multiple metabolic processes and several key factors that might be involved in germ cell differentiation and TGCT formation. Importantly, knockdown of eIF1A and eIF2γ, key components of pre-initiation complex, mimicked the phenotype of knocking down eIF5 in the stem cell niche of Drosophila testes. Genetic interaction analysis indicated that eIF5 was sufficient to rescue the phenotype of tumorlike structures induced by down-regulating eIF1A or eIF2γ in CySCs. CONCLUSIONS: These findings demonstrated that CySC lineage eIF5, together with eIF1A or eIF2γ, mediates soma-germline communications for the stem cell niche homeostasis in Drosophila testes, providing new insights for the prevention of TGCTs.


Assuntos
Cistos , Neoplasias Embrionárias de Células Germinativas , Animais , Linhagem da Célula/genética , Cistos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células Germinativas/metabolismo , Masculino , Neoplasias Embrionárias de Células Germinativas/metabolismo , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Células-Tronco/metabolismo , Neoplasias Testiculares , Testículo/metabolismo
2.
World J Surg Oncol ; 20(1): 161, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590327

RESUMO

BACKGROUND: The effective components contained in compound Kushen injection (CKI) and the genes and signalling pathways related to gastric cancer (GC) were analyzed through the network pharmacology method of traditional Chinese medicine, and various possible mechanisms by which CKI affects the proliferation, differentiation, survival, and metastasis of GC cells were discussed. The PI3K/AKT signalling pathway is considered to be one of the most important pathways targeted by CKI in the regulation of GC cells. The implementation of related cell experiments also confirmed the information we revealed. METHODS: Effective drug components of Kushen and Baituling in CKI were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). Genes related to GC were identified using the GENECARD and OMIM databases. The common target genes related to the effective components of the drug and GC were identified using the intersection method and visualized using software. A protein-protein interaction network (PPI) was established using STRING online software to confirm the key genes. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the key pathways of CKI in GC treatment. BGC-803 and MKN-28 GC cells were used to verify the signalling pathway. Cell proliferation, apoptosis, migration ability, and invasion ability were assessed using CCK8, flow cytometry, scratch, and transwell assays. Immunofluorescence assays and western blotting were used to detect the expression of related proteins. RESULTS: CKI regulated GC cells through 35 effective drug components of GC-related target genes. In total, 194 genes were common targets of CKI and GC. The most significant function of the enriched genes was DNA-binding transcription activator activity as demonstrated by GO enrichment analysis. The metabolic pathway with the highest enrichment was the PI3K/AKT signalling pathway as demonstrated by KEGG enrichment analysis. Our cell experimental evidence also shows that CKI inhibits GC cell growth and migration and induce GC cell apoptosis. In addition, CKI inhibits the EMT process in GC cells through the PI3K/AKT signalling pathway. CONCLUSION: AKT1 is a key gene for CKI treatment of GC. CKI inhibited GC cell growth and migration and induced GC cell apoptosis. In addition, CKI regulated the EMT process in GC cells through the PI3K/AKT signalling pathway.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Antineoplásicos/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
3.
Food Chem Toxicol ; 164: 113051, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460824

RESUMO

Individuals of all ages, including children and teenagers, consume 4-methylimidazole (4-MI) in their food. 4-MI is a caramel-colored waste product that has previously been linked to human carcinogenesis and has shown possible signs of reproductive toxicity. This study aimed to determine whether 4-MI is harmful to oocytes during meiosis and fertilization. Female mice were intragastrically administered 0, 50, or 100 mg/kg body weight of 4-MI daily for 10 days. We found that 4-MI affects the quality of oocytes by affecting their meiotic ability and fertility potential. Specifically, 4-MI rendered the meiotic spindles and chromosomes less stable, which halted oocyte maturation and resulted in aneuploidy. 4-MI also slowed the decrease in the levels of cortical granules and their component ovastacin; consequently, sperms could not be bound and fertilization could not occur. We also found that mitochondrial dysfunction was associated with oocytes deterioration. This led to reactive oxygen species accumulation and cell death. Altogether, our findings reveal that the poor condition of oocytes subjected to 4-MI is primarily attributable to mitochondrial malfunction and redox alterations.


Assuntos
Meiose , Oócitos , Animais , Feminino , Fertilização , Imidazóis/metabolismo , Camundongos
4.
Biol Reprod ; 107(2): 635-649, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191979

RESUMO

Levels of cotinine, a major metabolite of nicotine, have been positively correlated with risks of cigarette smoking-related diseases. Melatonin is synthesized by the pineal gland and has been demonstrated to be beneficial to oocyte maturation due to its antioxidative activity. In this study, we investigated the effects of cotinine on mouse oocyte meiosis and the protective roles of melatonin in vitro and in vivo. The results showed that cotinine exposure caused defects in the first polar body extrusion and reduced parthenogenetic activation in in vitro-matured oocytes. Additionally, cotinine exposure increased the level of oxidative stress, which resulted in aberrant actin distribution, abnormal spindle morphology, chromosome misalignment, and even oocyte aneuploidy. Simultaneously, cotinine exposure decreased the mitochondrial membrane potential and antioxidant gene expression and increased apoptosis-related gene expression. However, all these toxic effects of cotinine could be reversed after the addition of melatonin, and the mechanism may be a decrease in reactive oxygen species production. In conclusion, cotinine causes poor oocyte quality, which could be rescued by melatonin supplementation during meiotic maturation in mouse oocytes.


Assuntos
Melatonina , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cotinina/metabolismo , Cotinina/farmacologia , Meiose , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Oócitos/metabolismo , Oogênese , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Cell Death Differ ; 29(8): 1466-1473, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35017645

RESUMO

Soon after fertilization, the block mechanisms are developed in the zona pellucida (ZP) and plasma membrane of the egg to prevent any additional sperm from binding, penetration, and fusion. However, the molecular basis and underlying mechanism for the post-fertilization block to sperm penetration through ZP has not yet been determined. Here, we find that transglutaminase 2 (Tgm2), an enzyme that catalyzes proteins by the formation of an isopeptide bond within or between polypeptide chains, crosslinks zona pellucida glycoprotein 3 (ZP3) to result in the ZP hardening after fertilization and thus prevents polyspermy. Tgm2 abundantly accumulates in the subcortical region of the oocytes and vanishes upon fertilization. Both inhibition of Tgm2 activity in oocytes by the specific inhibitor in vitro and genetic ablation of Tgm2 in vivo cause the presence of additional sperm in the perivitelline space of fertilized eggs, consequently leading to the polyploid embryos. Biochemically, recombinant Tgm2 binds to and crosslinks ZP3 proteins in vitro, and incubation of oocytes with recombinant Tgm2 protein inhibits the polyspermy. Altogether, our data identify Tgm2 as a participant of zona block to the post-fertilization sperm penetration via hardening ZP surrounding fertilized eggs, extending our current understanding about the molecular basis of block to polyspermy.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Sêmen , Glicoproteínas da Zona Pelúcida , Animais , Feminino , Masculino , Camundongos , Oócitos , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Proteínas/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/metabolismo
6.
Cell Prolif ; 54(10): e13119, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34435400

RESUMO

OBJECTIVES: Histone deacetylase 8 (HDAC8) is one of the class I HDAC family proteins, which participates in the neuronal disorders, parasitic/viral infections, tumorigenesis and many other biological processes. However, its potential function during female germ cell development has not yet been fully understood. MATERIALS AND METHODS: HDAC8-targeting siRNA was microinjected into GV oocytes to deplete HDAC8. PCI-34051 was used to inhibit the enzyme activity of HDAC8. Immunostaining, immunoblotting and fluorescence intensity quantification were applied to assess the effects of HDAC8 depletion or inhibition on the oocyte meiotic maturation, spindle/chromosome structure, γ-tubulin dynamics and acetylation level of α-tubulin. RESULTS: We observed that HDAC8 was localized in the nucleus at GV stage and then translocated to the spindle apparatus from GVBD to M II stages in porcine oocytes. Depletion of HDAC8 led to the oocyte meiotic failure by showing the reduced polar body extrusion rate. In addition, depletion of HDAC8 resulted in aberrant spindle morphologies and misaligned chromosomes due to the defective recruitment of γ-tubulin to the spindle poles. Notably, these meiotic defects were photocopied by inhibition of HDAC8 activity using its specific inhibitor PCI-34051. However, inhibition of HDAC8 did not affect microtubule stability as assessed by the acetylation level of α-tubulin. CONCLUSIONS: Collectively, our findings demonstrate that HDAC8 acts as a regulator of spindle assembly during porcine oocyte meiotic maturation.


Assuntos
Histona Desacetilases/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Fuso Acromático/metabolismo , Acetilação/efeitos dos fármacos , Animais , Fenômenos Biológicos/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Cromossomos/metabolismo , Cromossomos/fisiologia , Feminino , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Meiose/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/fisiologia , Suínos , Tubulina (Proteína)/metabolismo
7.
Medicine (Baltimore) ; 99(49): e23321, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285708

RESUMO

The relationship between splenic volume and the outcome of chemoradiotherapy for lung cancer has rarely been studied or addressed. The purpose of our study was to investigate whether splenic volume was associated with prognosis in patients treated with chemoradiotherapy for advanced or locally advanced non-small cell lung cancer (NSCLC).A retrospective investigation was conducted. Finally, 202 patients met the criteria and were included in the study. All patients were divided into 2 groups according to the optimum cutoff value of splenic volume for overall survival (OS). The optimum cutoff value was identified by X-tile software, and the OS and disease-free survival (DFS) were compared between the 2 groups of patients. The impact of splenic volume and other clinical characteristics on OS and DFS was analyzed using the Kaplan-Meier method and Cox proportional hazards model. Clinical characteristics were compared using chi-square or Fisher exact tests.The median (range) of splenic volume was 156.03 (28.55-828.11) cm. The optimal cutoff value of splenic volume was 288.4 cm. For univariate analyses, high splenic volume was associated with decreased OS (P = .025) and DFS (P = .044). In multivariate analyses, splenic volume remained an independent predictor of OS as a binary dependent variable (P = .003).Excessive splenic volume was associated with decreased OS and DFS in patients with NSCLC treated with chemoradiotherapy. Splenic volume should be regarded as an independent prognostic factor for patients treated with chemoradiotherapy for advanced or locally advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/métodos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Baço/patologia , Fatores Etários , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Comorbidade , Receptores ErbB/biossíntese , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores Sexuais , Baço/diagnóstico por imagem
8.
Hum Reprod ; 33(1): 116-127, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29112712

RESUMO

STUDY QUESTION: Does melatonin restore the benzo(a)pyrene (BaP)-induced meiotic failure in porcine oocytes? SUMMARY ANSWER: Melatonin effectively inhibits the increased reactive oxygen species (ROS) level and apoptotic rate in BaP-exposed porcine oocytes to recover the meiotic failure. WHAT IS KNOWN ALREADY: BaP, a widespread environmental carcinogen found in particulate matter, 2.5 µm or less (PM2.5), has been shown to have toxicity at the level of the reproductive systems. BaP exposure disrupts the steroid balance, alters the expression of ovarian estrogen receptor and causes premature ovarian failure through the rapid depletion of the primordial follicle pool. In addition, acute exposure to BaP has transient adverse effects on the follicle growth, ovulation and formation of corpora lutea, which results in transient infertility. STUDY DESIGN, SIZE, DURATION: Porcine oocytes were randomly assigned to control, BaP-exposed and melatonin-supplemented groups. BaP was dissolved in dimethylsulphoxide and diluted to a final concentration of 50, 100 or 250 µM with maturation medium, respectively. Melatonin was dissolved in the absolute ethanol and diluted with maturation medium to a final concentration of 1 nM, 100 nM, 10 µM and 1 mM, respectively. The in vitro cultured oocytes from each group after treatment were applied to the subsequent analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Acquisition of oocyte meiotic competence was assessed using immunostaining, fluorescent intensity quantification and/or immunoblotting to analyse the cytoskeleton assembly, mitochondrial integrity, cortical granule dynamics, ovastacin distribution, ROS level and apoptotic rate. Fertilization ability of oocytes was examined by sperm binding assay and IVF. MAIN RESULTS AND THE ROLE OF CHANCE: BaP exposure resulted in the oocyte meiotic failure (P = 0.001) via impairing the meiotic apparatus, showing a prominently defective spindle assembly (P = 0.003), actin dynamics (P < 0.001) and mitochondrion integrity (P < 0.001). In addition, BaP exposure caused the abnormal distribution of cortical granules (P < 0.001) and ovastacin (P = 0.003), which were consistent with the observation that fewer sperm bound to the zona pellucida surrounding the unfertilized BaP-exposed eggs (P < 0.001), contributing to the fertilization failure (P < 0.001). Conversely, melatonin supplementation recovered, at least partially, all the meiotic defects caused by BaP exposure through inhibiting the rise in ROS level (P = 0.015) and apoptotic rate (P = 0.001). LIMITATIONS, REASONS FOR CAUTION: We investigated the negative impact of BaP on the oocyte meiotic maturation in vitro, but not in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Our findings not only deeply clarify the potential mechanisms of BaP-induced oocyte meiotic failure, but also extend the understanding about how environmental pollutants influence the reproductive systems in humans. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the National Natural Science Foundation of China (31571545) and the Natural Science Foundation of Jiangsu Province (BK20150677). The authors have no conflict of interest to disclose.


Assuntos
Benzo(a)pireno/toxicidade , Meiose/efeitos dos fármacos , Melatonina/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinógenos Ambientais/toxicidade , China , Feminino , Fertilização/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Mitocôndrias/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Sus scrofa
9.
FASEB J ; 32(1): 342-352, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904021

RESUMO

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant and carcinogen that is frequently found in particulate matter, with a diameter of ≤2.5 µm (PM2.5). It has been reported to interrupt the normal reproductive system, but the exact molecular basis has not been clearly defined. To understand the underlying mechanisms regarding how BaP exposure disrupts female fertility, we evaluated oocyte quality by assessing the critical regulators and events during oocyte meiotic maturation and fertilization. We found that BaP exposure compromised the mouse oocyte meiotic progression by disrupting normal spindle assembly, chromosome alignment, and kinetochore-microtubule attachment, consequently leading to the generation of aneuploid eggs. In addition, BaP administration significantly decreased the fertilization rate of mouse eggs by reducing the number of sperm binding to the zona pellucida, which was consistent with the premature cleavage of N terminus of zona pellucida sperm-binding protein 2 and precocious exocytosis of ovastacin. Furthermore, BaP exposure interfered with the gamete fusion process by perturbing the localization and protein level of Juno. Notably, we found that BaP exposure induced oxidative stress with an increased level of reactive oxygen species and apoptosis in oocytes and thereby led to the deterioration of critical regulators and events during oocyte meiotic progression and fertilization. Our data document that BaP exposure reduces female fertility via impairing oocyte maturation and fertilization ability induced by oxidative stress and early apoptosis in murine models.-Zhang, M., Miao, Y., Chen, Q., Cai, M., Dong, W., Dai, X., Lu, Y., Zhou, C., Cui, Z., Xiong, B. BaP exposure causes oocyte meiotic arrest and fertilization failure to weaken female fertility.


Assuntos
Benzo(a)pireno/toxicidade , Fertilização/efeitos dos fármacos , Infertilidade Feminina/induzido quimicamente , Oócitos/efeitos dos fármacos , Oócitos/patologia , Aneugênicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Feminino , Infertilidade Feminina/patologia , Cinetocoros/efeitos dos fármacos , Masculino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos
10.
Cell Cycle ; 16(21): 2139-2145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933593

RESUMO

Cytoplasmic dynein is a family of cytoskeletal motor proteins that move towards the minus-end of the microtubules to perform functions in a variety of mitotic processes such as cargo transport, organelle positioning, chromosome movement and centrosome assembly. However, its specific roles during mammalian oocyte meiosis have not been fully defined. Herein, we investigated the critical events during porcine oocyte meiotic maturation after inhibition of dynein by Ciliobrevin D treatment. We found that oocyte meiotic progression was arrested when inhibited of dynein by showing the poor expansion of cumulus cells and decreased rate of polar body extrusion. Meanwhile, the spindle assembly and chromosome alignment were disrupted, accompanied by the reduced level of acetylated α-tubulin, indicative of weakened microtubule stability. Defective actin polymerization on the plasma membrane was also observed in dynein-inhibited oocytes. In addition, inhibition of dynein caused the abnormal distribution of cortical granules and precocious exocytosis of ovastacin, a cortical granule component, which predicts that ZP2, the sperm binding site in the zona pellucida, might be prematurely cleaved in the unfertilized dynein-inhibited oocytes, potentially leading to the fertilization failure. Collectively, our findings reveal that dynein plays a part in porcine oocyte meiotic progression by regulating the cytoskeleton dynamics including microtubule stability, spindle assembly, chromosome alignment and actin polymerization. We also find that dynein mediates the normal cortical granule distribution and exocytosis timing of ovastacin in unfertilized eggs which are the essential for the successful fertilization.


Assuntos
Citoesqueleto/metabolismo , Dineínas/metabolismo , Oócitos/metabolismo , Animais , Centrossomo/metabolismo , Cromossomos/metabolismo , Células do Cúmulo/metabolismo , Meiose/fisiologia , Oogênese/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA